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Abstract--Counter-current flow pattern transition and pressure drop are modeled. Emphasis is placed on 
the understanding of the transition mechanisms from a mechanistic point of view. 

Unlike the case of co-current flow, in counter-current flow, the situations of "no solution" as well as 
"'multiple solutions" for the flow pattern and pressure drop exist. These possibilities are discussed and 
criteria for the actual flow pattern that will take place are suggested. 

Some of the results are supported by data (from the literature), others are somewhat tentative suggesting 
future experimental verification is needed. 

INTRODUCTION 

Counter-current flow has been studied primarily in connection with flooding and flow reversal 

as well as in connection with bubble columns. 
The flooding phenomena is associated with the limit of counter-current flow; namely the 

limit of liquid flow rate downward under gravity caused by gas flowing upwards driven by 

pressure difference. Some of the most recent work on this topic are by Wallis et al. (1978) and 

Taitel et al. (1982) suggesting a film model to predict the flooding limit. Richter (1981) suggested 
that flooding occurs due to unstable wave and developed a theory for the prediction of the 

flooding limit. Tien et al. (1979) developed new correlations of the Wallis-Kutateladze type. 
Their derivation is based on modeling using the concept of interfacial instability coupled with 

kinematic wave theory and the critical wave length concept. Wallis et al. (1981) considered the 
case of flooding in many parallel vertical tubes. In spite of the progress achieved in the 

understanding of the flooding process (Note also the work by Shearer & Davidson 1965; 
Centinbudaklar & Jameson 1969; Imura et al. 1977; Dukler & Smith 1977; and Suzuki & Ueda 

1977) it is far from being well understood and prediction techniques rely heavily on experimen- 

tal correlations. 
The most successful correlation is due to Wallis (1969)[1] which relates the 

superficial velocities of the liquid and gas at the flooding point. Of special interest is also the 
correlation suggested by Pushkina & Sorokin (1969) which correlates the gas flow rate at the 

zero liquid penetration point. Note that Pushkina and Sorokin's result is in contradiction to 
Wallis' (1969) correlation and it is believed (Richter 1981) that the Wallis correlation applies to 

small diameter pipes whereas the latter to large diameter pipes. In all the aforementioned 
studies, the flow pattern associated with this process is counter-current annular flow. 

Counter-current flow is closely associated with bubble columns. Bubble columns are widely 
used as gas-liquid reactors where questions like holdup, pressure drop and interfacial area are 
of major importance. A thorough review of bubble columns is presented by Shah et al. (1978) 
which covers all types of gas-liquid reactors. A fairly recent work on gas holdup in bubble 

columns is given by Hikita et al. (1980). Vermeer & Kriahna (1981) considered the performance 
of bubble columns in the range of slug-bubble flow at superficial gas velocity above 0.1 m/s. 

The performance of bubble flow can be treated by the drift flux model since, to a good 
approximation, the drift flux in bubble flow is a function only of the gas holdup. The classical 
analysis given by Wallis (1969) shows that there are three possible situations for counter- 
current bubble flow: (1) condition of no solution, namely the bubble column cannot operate in a 
steady state fashion for the liquid and gas flow rate in this region, (2) condition of two solutions, 
namely the bubble column can operate in two values of void fraction and (3) where only one 
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solution exists. The latter occurs on the exact boundary between the condition of no solution 
and two solutions. This approach however, is valid, only in the bubble flow regime which can 
not exist at high void fraction (considering non-foaming systems). 

In spite of the extensive work on counter-current annular flow (Flooding) and bubble 
flow, no work has been focused on the conditions under which either of the flow patterns exists, 
nor on predicting the flow pattern boundaries at which one flow pattern changes to a different 

one. 
The flow pattern that can be observed in vertical counter-current flow are bubble flow, slug 

flow and annular flow. However unlike co-current flow (either upward or downward) where the 
flow pattern is a fairly unique function of the flow rates, multiple solutions for the flow patterns 
can occur in counter-current flow. Furthermore, counter-current flow may not exist for certain 
values of liquid and gas flow rates, again contrary to the case of co-current flow. 

Figure 1 shows three cases of the typical counter-current flow patterns that may exist at the 
same gas and liquid flow rates. Intuitively one may realize that annular flow will exist when the 
bottom of the column is wide open. On the other hand bubble or slug flow will take place when 
the liquid valves are only slightly open. Clearly the latter is associated with much higher 
pressure drop owing primarily to the hydrostatic head. 

The purpose of this work is to model the various flow patterns and the transition boundaries 
as well as the pressure drop. 

M O D E L I N G  

Depending on the operating conditions, i.e. gas and liquid flow rates, pipe diameter, entrance 
and exit conditions as well as physical properties three flow patterns may be observed: annular 
flow, bubble flow and slug flow. 

The possible existance of each of the flow patterns is modeled and criteria for transitions 
from one flow pattern to another are developed. In addition the pressure drop is calculated for 
each flow pattern. 

Annular flow 
Annular flow seems to be the "most natural" flow pattern of counter current flow. It is the 

only flow pattern obtained for open exit lower end. The liquid is in the form of falling film for a 
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Figure 1. Flow patterns in vertical counter-current  two phase flow. 
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wide range of gas flow rate up to the flooding point at which the downcoming liquid is swept 
upward. The flooding phenomenon is the limiting possible solution for counter-current flow. 
Thus the flooding line is the transition boundary from annular flow to "no solution". There is no 
acceptable theory for an accurate prediction of the flooding process. For the purpose of this 
study we will use Wallis correlation of the form 

i~OsplG/2 q 1/2 r t~LsPLl/2 11;  
X/gD(OL-OO)J + I-VgD-----(--~LPL----#O)J = C. [ I ]  

In this equation u~ and UL~ are the superficial velocities of the gas and liquid respectively, 
pc and DE the gas and liquid densities, g the acceleration of gravity and D the pipe diameter. C 
is an empirical constant of the order of unity. The transition line with C = l is shown in figure 2 
for air-water at 5 cm dia. pipe by transition "a".  

Since Wallis' correlation is supported by data, so is transition "a".  Note however that no 
attempt to be very accurate was made here, and the transition line may shift somewhat if more 
uptodate, and possibly more accurate, correlations are used. 

The pressure drop is obtained using a straightforward momentum balance on the gas core. 
Assuming a ,~ D, no axial variations and constant properties yields: 

dP 4Ti 
dx D - 2a PGg. [21 

The film thickness a is fairly constant for gas flow rates up to very close to the flooding 
point (Hewitt & Wallis 1963; Taitel et al. 1982). Thus the liquid film thickness 8 can be 
estimated by its value for the case of free falling film. In this case (Wallis 1969) suggested that 

"a l /3 r  U D -'m a ~[ I lOLLs | = K [3] D3g(OL--PO)OLJ J 

where IzL is the liquid dynamic viscosity. K and m are 0.909 and 1/3 for laminar flow and 0.115 
and 0.6 for turbulent flow. The film Reynolds number (UtOLa/IZL) of 1000 has been shown to be 
the critical Reynolds number at which transition occurs. 
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Figure 2. Flow pattern map for vertical counter-current pipes 5cmdia., air-water at 25°C, 0.1MPa. 
(A, Annular; S, slug; B, bubble). 
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The interfacial shears r~ is given by 

[ U Gs 
~'i = 5 fiP6 - - ~ \ 4"  

" (1-2 5 ) 
141 

For the interfacial shear friction factor fg Wallis correlation of the form 

f , =  A + B -~ [51 

is used. Wallis suggested the values A = 0.005, B = 1.5 and n = 1. Admittedly the question of 
the interfacial shear, particularly for counter-current flow is not considered closed. Yet, Wallis' 
form is simple, widely used, and yields fairly satisfactory results. It should be emphasized, 
however that[5] is a correlation for "well behaved" concurrent annular flow, and we assume 
that it is also valid for "well behaved" counter current film flow. It is not valid close to the 
flooding point. The pressure drop variation at the exact flooding point is a complex process 
quite different from the "well behaved" annular film flow. It is considered in some detail by 
Richter (1981) and Wallis et al. (1981). 

Bubble flow 

The next flow pattern considered is bubble flow which may exist within the region bounded 
by "a"  under certain conditions. 

For counter-current bubble flow the liquid flows downwards while the gas bubble rise 
upwards. The relation between the liquid and gas superficial velocities and the liquid holdup 
is given by (Taitel et al. 1980) 

[6] 

where Uo is the relative rise velocity of the bubbles, namely uo = u r - u 6  (ut. = uLJcb and 
uc, = uad(1-  40). Although the rise velocity u0 is a complex function of the bubble diameter, 
pipe diameter and void fraction it can be considered approximately constant for "large" 
bubbles and low void fraction and is given by (Harmathy 1960) correlation 

U0 = 1 5 3 [ g ( p L _ 2 P G ) O .  jl[4 
• L P L  J ' 

[7] 

For air-water at about 25°C and atmospheric pressure Uo = 0.25 m/s. Equation [6] is a quadratic 
equation yielding two, one or no solution for ~b. The case of no solution is given by 

Ut,s > u6~ + uo - ~/4uc,~uo. [8] 

This curve is shown on figure 2 by the boundary "b".  Bubble flow cannot exist for liquid 
and gas flow rates above this line. 

At ~b < 0.7 (void fraction greater than 0.3) bubbles tend to coallesce and form Taylor bubbles 
(Gritfith & Synder 1964). Thus within the region of solution defined by [8] bubble flow can exist 
only in the subregion where ~b > 0.7 in [6]. The line ~ = 0.7 is shown in figure 2 by transition 
"c".  As seen transition "c"  is tangent to the boundary "b" at a single point 0. The region to the 
left of "c"  corresponds to two possible solutions one of which is for ~b > 0.7 and the other for 
~b <0.7. The latter is unacceptable (for non foaming systems) and therefore this region 
corresponds to a single solution of bubble flow. The region to the right of "c"  and left of % "  
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up to the point 0, is the region where both solutions yields ~b < 0.7 and therefore do not exist. 
Thus the boundary "b"  to the "right" of 0 is "imaginary" and is plotted as a broken line. The 
small shaded region above transitions "c"  and below "b"  is a region where both solutions for 4~ 
are between 0.7 to 1. Thus, in this region two solutions of bubble flow exist. As seen, however, 
this region is quite small (in the range of flow rates shown in figure 2). The limiting boundary for 
bubble flow consists of transition "c"  up to point 0 (the solid line) and transition "b"  to the left 
of point 0. 

Notice that both annular flow and bubble flow can exist for this region. The factor that will 
determine the actual flow pattern is the pressure drop as provided by the boundary conditions. 

For very low liquid flow rate the liquid is almost stagnant and transition "c"  in this region is 
the same as bubble-slug transition for co-current flow. Thus transition "c"  in this range is 
supported by data that was found valid for upward co-current flow (Taitel et al. 1980). Note also 
the observation by Vermeer & Krishna (1981) for stagnant liquid systems that small bubble flow 
changes to "large, fast rising bubbles", namely to slug flow (for D < 10 cm) or Churn-Turbulent 
flow (for D >  10cm) above uc~ ~0.1 m/s. This agrees also quite well with our proposed 
transition "c"  at low liquid flow rate. 

The pressure drop associated with bubble flow is primarily attributed to the hydrostatic head 
(figure 1) and depends primarily on the void fraction ~ -- (1 - ~b). Thus, 

d P _  2 2 
dx PMg + ~fpLu L [9] 

where the second term on the r.h.s, is the frictional pressure drop which, though small for 
bubble flow, can be easily taken into account. In [9] the friction factor for smooth pipes is 
assumed 

f =O.O46(OLDUL~ -°'2 [10] 
\ ~ L  / 

for turbulent flow and 

f =  16(#LDUL') -' [11] 
\ P,L / 

for laminar flow. The mixture density PM is given by 

PM = PL~ + pC(1 -- ~). [12] 

Note that the pressure drop is calculated on the basis of the liquid velocity. This seems to be a 
reasonable approach. The homogeneous model is not applicable here since we do have a slip 
between the phases and the homogeneous model can yield negative pressure drop (since uM 
may be in the upward direction). At any rate the frictional pressure drop is so small in bubble 
flow that more exact methods are simply not worth the effort. 

Slug flow 
Bubble flow develops into slug flow beyond tranditions "c"  and "b"  as previously 

mentioned. Slug flow consists of long Taylor type bubbles separated by slugs of liquid. The 
term slug flow used here is an idialization of all types of intermittent flows including Churn 
Turbulent that has been observed in large diameter pipes. The liquid slugs may or may not 
contain small bubbles. For the purpose of this analysis the liquid slug will be assumed to be free 
of gas bubbles. The Taylor bubble has a characteristic spherical cap with a cylindrical body 
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having a cross sectional area close to that of the pipe. The liquid confined between the bubble 
and the pipe flows around the bubble in the form of a falling film. 

Counter current slug flow is not possible for either high liquid or high gas flow rates, where 
transition to annular flow must take place. Increasing liquid flow rate decreases the upward 
velocity of the Taylor bubbles until a limiting point is reached where gas mass balance cannot 
be satisfied. On the other hand increasing the gas flow rate causes flooding that limits the 
possible counter-current liquid flow rate. As a result, again, slug flow is not possible beyond this 
point. 

The velocity of the Taylor bubble uc is given quite accurately by the relation (Nicklin et al. 

1962). 

uc = 1.2UE + 0.35~/g--D. [13] 

Equation [3] was proposed for cocurrent flow, however, it has no restriction to counter current 
application. Continuity considerations require that 

UL = UC~ -- UE~ [14] 

and 

u~ - UL = 4~(U6 + U s) [15] 

where u s is the film average downward velocity and 8 is the film thickness. 
Equation [15] is a mass balance relative to the moving gas bubble. Note also that in [15] 8/D 

is assumed small such that the cross sectional area of the liquid film is 7rD& Since the liquid film 
adjacent to the gas bubble is in the form of a free falling film, its average velocity u s is related 
to its thickness using [3] by replacing DUEs by 4u s& The film thickness as a function of u s is 
thus obtained by 

8 r ~ 1 ~ [4o~_ze~q q 
- ~ = B L D 3 g ( p E _ p ~ ) p E j  L t~L J 

[16] 

where B, p and q equal to 0.00448, 516, 3/2 for turbulent flow and 0.8667, 1/2 and 1/2 for laminar 
flow respectively. The determination of laminar or turbulent flow in the film is based, as 
suggested by Wallis (1969), on the film Reynolds Number Re I = pLUiS/l~E. Thus the film flow is 
turbulent for Re s > 1000 and laminar for Re s < 1000. 

Substituting [13] and [14] in [15] yields 

UE = Ua~ -- ULs = [17] 
0.2--4.8~ 

For given u~ and UL~ [16] and [17] can be solved for u I and ~S/D. A convenient hand 
calculator explicit approach can be used by tabulating ~ID and u ~ -  UE~ as a function of u f 
using [16] and [17]. 

The relative length of the gas bubble loll can be derived from a simple mass balance on the 
gas that leaves the upper end of the pipe or alternatively on the liquid that leaves the bottom of 
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the pipe assuming the gas bubble is a cylinder of constant cross sectional area. This yields 

I_fiG = ties 

I 4~ ut+(uo~- ULs) 
[18] 

For a physical solution that satisfies mass balance loll should be always less than unity. 
Therefore 

4-~ ut > UL~ [19] 

limits the possibility of the slug flow pattern. The boundary [19] is plotted on figure 2 by the 
boundary "d"  which limits the region of slug flow as liquid flow rate is increased. 

A different boundary limits slug flow when gas flow rate is increased. This limit is reached 
when the relative velocity between the Taylor bubble and the liquid film adjacent to it reaches 
the condition of flooding. Equation [1] can be used for this purpose when u~s is replaced by 
(1-  4(~/D))uo and ULS by 4(tlD)u¢. The final results using also [13] and [14] for uo yields 

uc~ - uL~ -< 0.292~/g--D. [20] 
1.2(1 , 8 \  t;2 

\ 

Thus [20] has to be satisfied for slug flow to exist. Equation [20] is plotted on figure 2 as 
transition "e". Notice that transitions "d",  "e" and "a"  intersect at a common point since at 
this point transition "d"  represent the case when loll approach unity and the slug flow 
approaches annular flow. 

The pressure drop consists of the following contributions: 
(a) The pressure drop in the liquid slug, consists of gravitational and frictional contributions 

2 

The friction factor [L is calculated by [10] or [11] where UL, the slug velocity here, is taken 
in its absolute value. 

(b) The pressure drop in the Taylor bubble zone. It is usually very small. Still it can be easily 
calculated by 

[221 

The second term on the r.h.s, is the frictional contribution caused by the interfacial shear zi. 
It can be calculated from 

! 2 Ti = ~fiPcl.~ a [23] 

where for f; a correlation of the same form as [5] is used. 
(c) In addition, acceleration pressure drop is associated with the mixing zone of the liquid slug 
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at which the liquid film decelerates to the slug velocity. As in Dukler & Hubbart (1975) this pressure 
drop can be calculated by 

d P )  (UG - -  /-/L)PL(/,/L -}- 

d-x ~ - t u l )  [24]  

where l is the length of a slug unit. Thus unlike the previous cases where only the ratio loll was 
needed the absolute length of a slug unit is needed here. It can be calculated on the basis of the 
length of the liquid slug which has been demonstrated (Taitel et al. 1980) to be fairly constant 
and equal approximately to 16D. In this case l = 16D/(1 - It,/l). 

Finally the total average pressure drop is calculated by 

dx dx ] l, dx ] c, 
[251 

R E S U L T S  AND DISCUSSION 

Figure 2 shows a typical flow pattern map obtained using the aforementioned models for 
air-water system in 5-cm pipe at 25°C and atmospheric pressure. 

Transition "a"  separates the flow region into "no solution zone" and a zone where solution 
is possible. The region of possible solution is subdivided into 3 zones: 

(1) A region "A" where only annular flow exist (above transition "d"  and to the right of 
"co"), 

(2) A region "A + S" where only annular and slug flow can exist (left of "e",  below "d" and 
to the right of "c"). 

(3) A region "A + S + B" where annular, slug and bubble flow can exist. This region is 
bounded on the right by "c"  up to the point 0 and at the top, to the left of the point 0, by "b". 

Note that in the small shaded area bounded by "c"  and "b"  two solutions for bubble flow 
exist. Namely two possibilities for void fraction for the same flow rates. 

As seen annular flow is the dominant flow pattern which can exist in the whole range of 
possible solutions. It is therefore being considered here as the "most natural" flow pattern for 

counter current flow. 
Slug flow can exist in the "A + S" region and the "A + S + B" region. Bubble flow can exist 

only in the "A + S + B" zone. 
The question that arises is what determines the actual flow pattern that takes place in a zone 

where multiple solutions are possible: 
The pressure drop associated with annular flow is about two to three orders of magnitude 

lower than for slug and bubble flow (accept for very high gas flow rates). 
Therefore annular flow will result when low pressure exit boundary condition is imposed at 

the lower end of the tube. In other words when the liquid can flow with minimal restriction at 
the liquid exit (see figure 1). When the liquid flow is restricted the liquid will accumulate in the 
pipe until the static head built is sufficient to force out the liquid at a comparable rate to the 
annular flow pattern with no restriction. In the latter case bubble on slug flow will result. 

The pressure drop in slug and bubble flow is primarily the result of the hydrostatic head. 
Both flow patterns have about the same order of pressure drop in the region where both 
patterns can exist (the "A+ S + B" zone). As mentioned in Taitel et al. (1980) slug flow is 
unstable for pipes where the free rise velocity of a Taylor bubble in slug flow exceed the rise 
velocity of the bubbles. Namely when 

0.35X/g-D > 1 53[ g(pr --zO°)°'] 1/4 
• [ P L  J " 

[261 

The mechanistic explanation is as follows: Slug flow is generated through spontaneous 
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agglomeration of bubbles. In slug flow, however, bubbles are torn away from the back end of 
the Taylor bubble owing to the vigorous mixing of the free falling film that penetrates the liquid 
slug. If the bubbles move slower than the Taylor bubble they are left behind and eventually the 
slug flow pattern is destroyed, maintaining the bubble flow pattern. Thus the region "A + S + 
B" will result in bubble flow in large diameter pipes and slug flow in small diameter pipes. For 
air-water this occurs at pipe diameter of about 5 cm. In spite of the aforementioned, bubble 
flow can exist also in small diameter pipe if special efforts are taken to introduce the bubbles at 
a small diameter. Bubbles of small size tend to behave as rigid spheres and resist agglomeration 
and therefore can exist also in small diameter pipes. Thus it is estimated that when the bubble 
diameter is less than (Brodkey 1967), 

f 0.4,, 1 
d < L(p~-~)gJ [27] 

the bubbles will not coalesce to form slugs. 
The results for pressure drop are shown in figure 3 for air-water system. The variation of 

the pressure drop with the gas flow rate uc~ is plotted for 3 different liquid flow rates. The 
curves are terminated at the boundary beyond which the particular flow pattern cannot exist. 

As seen the pressure drop associated with annular flow is two to three folds lower than for 
the case of bubble and slug flow. This of course is a direct result of the high void fraction 
associated with annular flow. For bubble and slug flow the major contribution to the pressure 
drop results from the gravitational head which approaches that of the liquid at low gas flow 
rate. 

It is interesting to observe that the pressure drop increases with gas flow rate for annular 
flow while it decreases for bubble and slug flow. This, of course, is owing to the increase in void 
fraction with increasing ucs for bubble and slug flow while in annular flow the void fraction 
remains the same (more accurately it decreases a little near the flooding point) and the pressure 
drop is primarily due to interfacial shear. 

Furthermore, for slug and bubble flow the pressure decreases with increasing liquid flow 
rate contrary to annular flow and also contrary to slug and bubble flow in co-current upward gas 
liquid flow. This is the result of the increase in the gas holdup caused by increasing the liquid 
downward velocity which decreases the absolute upward velocity of the bubbles. 

SUMMARY AND CONCLUSIONS 

Models for predicting flow pattern transition boundaries and pressure drop for counter- 
current vertical flow are developed. 
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Figure 3. Pressure drop for vertical counter-current pipes, 5 cm dia., air-water at 25°C, 0.1 MPa. 
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Transition "a"  is the result of flooding in annular flow beyond which no possible solution 
can exist. Transition "b" and "c"  limit bubble flow. The former to the region where bubble flow 
can exist while the latter to the region where the void fraction is less than 0.3. Thus the bubble 
flow pattern is bounded by a section of transition "c"  (at lower liquid flow rate) and a section of 
transition "b". 

Transition "d" and "e"  limit the region of slug flow. Transition "d"  is caused by the 
inability of flow rates above "d"  to satisfies mass balance for slug flow. Transition "e" is 
caused by reaching flooding condition. 

The question of multiple solution for the flow pattern can be summarized as follows: 
(1) Annular flow can exist in the whole range and will take place in the case where the liquid 

outlet is not restricted (open exit). 
(2) Bubble flow will take place in the "A + S + B" zone in pipes of large diameter as given 

by [26]. Also bubble flow will take place if the bubbles, introduced into the column are very 
small [27]. 

The aforementioned theory is based on a mechanistic approach that put together known 
experimental observations and correlations in order to construct a complete picture of the flow 
pattern map. The accuracy of the approach depends on the correlations used. However, as has 
been demonstrated so many times in the past, accuracy in flow pattern transitions is impossible 
and usually not necessary. 

Experimental evidence is provided to confirm the validity of some of the transition lines. 
This applies to transition "a"  and "c"  (at low liquid flow rate). More experimental work is 
needed to verify the complete theory. 

The calculation for the pressure drop are based on acceptable correlations for the friction 
factor at the wall and the interface. The correlation for the friction factor [5] however does not 
apply very close to the flooding point. Therefore, the results for the pressure drop are likely to 
be wrong near transition "e"  and "a".  
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